Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \sqrt{x+1}-\sqrt{x}$
Votre réponseChoixCommentaireBonne réponse
Selected
$+\infty$
Utiliser la quantité conjuguée de $\sqrt{x+1}-\sqrt{x}$. Multiplier par $\dfrac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}$.
Should not have chosen
$1$
Should not have chosen
$0$
Should have chosen
$-\infty$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x+1}{\sqrt{x^2-1}}$
Votre réponseChoixCommentaireBonne réponse
Selected
$\mathbb{R} \setminus \{ -1 ; 1 \} $
Il faut exclure du domaine de définition non seulement les racines du polynôme $x^2-1$ mais aussi les valeurs de $x$ qui le rendent négatif.
Should not have chosen
$\rbrack -1 ; 1 \lbrack$
Should not have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should have chosen
$\rbrack -\infty ; -1 \rbrack \; \cup \; \lbrack 1 ; +\infty \lbrack$
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Une infinité de solutions. Système lié.
$\displaystyle (S)\begin{cases} x - y &= 0\\ 2x - 2y &= 0\end{cases} $
$E=\left\{ ( x = t; y = t ) \mathrm{pour tout} t\in \mathbb{R} \right\}$
Should have chosen
Aucune solution. Système incompatible.
Should have chosen
Une seule solution. Système régulier.
Should have chosen
Exactement deux solutions.
Should not have chosen
Question 4

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
Votre réponseCommentaireBonne réponse
33
Question 5

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
Selected
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
Selected
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 6

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{h\to 0 \\ h>0} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 7

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{\substack{h\to 0 \\ h>0}} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un maximum en $x=2$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
C'est le maximum de $f'$, pas de $f$.
Question 10

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 11

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $f(x)=(x+1)e^{2x}$.
Pour tout réel $x$, on a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$f'(x)-2f(x)=e^{2x}$
Should have chosen
$f'(x) = 2(x+1)f(x)$
Should not have chosen
$f'(x)=2f(x)$
Should not have chosen
Question 12

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 13

$\displaystyle \lim\limits_{x \to +\infty} \frac{2e^x+1}{e^x+2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$2$
Should have chosen
Selected
$+\infty$
Factoriser numérateur et dénominateur par $e^x$.
Should not have chosen
$1$
Should not have chosen
$\displaystyle -\frac{1}{2} $
Should not have chosen
Question 14

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
est toujours négative.
Should have chosen
n'est négative que si $x$ est positif.
Should not have chosen
n'est négative que si $x$ est négatif.
Should not have chosen
n'est jamais négative.
Should not have chosen
Question 15

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected

une asymptote horizontale.

Il faudrait $\lim\limits_{x\to\infty}{\ln(x)=c}$ où $c\in \mathbb{R}$.

Should not have chosen

une asymptote verticale.

Should have chosen

une tangente horizontale.

Should not have chosen
Question 16

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$0$
Should not have chosen
$3e$
Should have chosen
Selected
$e^2$
Revoir $\ln'(x)=\frac{1}{x}$ et $\left(uv\right)'(x)=u'(x)v(x) + u(x)v'(x)$.
Should not have chosen
Question 17

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x>1$
Should not have chosen
Selected
$x<1+e$
Prendre en compte le domaine de définition de $x \mapsto \ln (x)$.
Should not have chosen
$1 < x < 1+e$
Should have chosen
Question 18

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\ln(2)$
Should have chosen
$e^2$
Should not have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
Question 19

Voici la courbe des fréquences cumulées croissantes du nombre d'enfants moyen par famille en France en 2007.

Parmi les 4 affirmations suivantes, laquelle est correcte ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
90 % des familles ont au moins 2 enfants.
Should not have chosen
70 % des familles ont au moins 1 enfant.
Should not have chosen
3 % des familles ont au plus 3 enfants.
Should not have chosen
22 % des familles ont un enfant unique.
Should have chosen
Pour trouver la fréquence des familles ayant un seul enfant, on fait le calcul $0,7 - 0,48 = 0,22$.
Question 20

On a représenté ci-contre les fréquences cumulées croissantes d'une série statistique. Les fréquences ne sont pas en pourcentage. La somme totale des fréquences est donc de 1.

Une seule des 4 affirmations suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Aucune n'est vraie.
Should not have chosen
$Q_3 = 450$
Should have chosen
Selected
$Q_1=300$
Should not have chosen
$Me = 0,3$
Should not have chosen
Le troisième quartile noté $Q_3$ est une valeur qui coupe la population en deux parts inégales : 3/4 (cad 75 %) ont un caractère inférieur à $Q_3$ et 1/4 supérieur à $Q_3$. Ici 75 % correspond à une fréquence de 0,75 , on se place à 0,75 au niveau de l'axe des ordonnées (où se trouvent les fréquences cumulées croissantes), on rejoint la courbe, et on lit l'abscisse correspondante : cela donne la valeur de 450. qui est le troisième quartile. Par la même méthode, on obtiendrait par exemple que le premier quartile est d'environ 250 (on place cette fois 0,25 sur l'axe des ordonnées, on rejoint la courbe, et on lit l'abscisse correspondante).