Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{x^3+1}{2x-x^3}$
Votre réponseChoixCommentaireBonne réponse
$+\infty$
Should not have chosen
Selected
$-1$
Should have chosen
$-\infty$
Should not have chosen
$\dfrac{1}{2}$
Should not have chosen
Question 2

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to -\infty} x^3 - x^2$
Votre réponseChoixCommentaireBonne réponse
$+\infty$
Should not have chosen
$1$
Should not have chosen
Selected
$-\infty$
Should have chosen
$0$
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Une seule solution. Système régulier.
Should have chosen
Exactement deux solutions.
Should not have chosen
Aucune solution. Système incompatible.
Should have chosen
Selected
Une infinité de solutions. Système lié.
$\displaystyle (S)\begin{cases} x - y &= 0\\ 2x - 2y &= 0\end{cases} $
$E=\left\{ ( x = t; y = t ) \mathrm{pour tout} t\in \mathbb{R} \right\}$
Should have chosen
Question 4

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
Votre réponseCommentaireBonne réponse
x=33
Question 5

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
Selected
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
Selected
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 7

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{h\to 0 \\ h>0} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 8

La fonction $A$ définie et dérivable sur $[0 ; 1]$ telle que, pout tout $x$ de $[0 ; 1]$ , $\displaystyle A'(x) = \frac{2x}{(1+2x)^2}$ est positive sur $[0;1]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La dérivée est positive, ce qui n'entraîne pas que la fonction soit positive. Essayer avec $\displaystyle A = \frac{-1}{1+x^2}$.
Question 9

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 11

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $f(x)=(x+1)e^{2x}$.
Pour tout réel $x$, on a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$f'(x) = 2(x+1)f(x)$
Should not have chosen
Selected
$f'(x)-2f(x)=e^{2x}$
Should have chosen
$f'(x)=2f(x)$
Should not have chosen
Question 12

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
Selected
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Revoir les limites classiques : $\lim \limits_{x \to -\infty} xe^x = 0$.
Should not have chosen
Question 13

$\displaystyle\lim\limits_{x \to +\infty} e^{-2x^2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$0$
Should have chosen
$+\infty$
Should not have chosen
$-\infty$
Should not have chosen
Question 14

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 15

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\ln(2)$
Should have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
$e^2$
Should not have chosen
Question 16

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$1 < x < 1+e$
Should have chosen
$x<1+e$
Should not have chosen
$x>1$
Should not have chosen
Question 17

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln (-2)$
Should not have chosen
$\ln(2)$
Should not have chosen
Selected

aucune

Should have chosen
Question 18

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$]0;+\infty [$
Should not have chosen
$\mathbb{R}$
Should not have chosen
Selected
$\mathbb{R}^*$
Should have chosen
Question 19

Voici la courbe des fréquences cumulées croissantes du nombre d'enfants moyen par famille en France en 2007.

Parmi les 4 affirmations suivantes, laquelle est correcte ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
3 % des familles ont au plus 3 enfants.
Should not have chosen
70 % des familles ont au moins 1 enfant.
Should not have chosen
90 % des familles ont au moins 2 enfants.
Should not have chosen
Selected
22 % des familles ont un enfant unique.
Should have chosen
Pour trouver la fréquence des familles ayant un seul enfant, on fait le calcul $0,7 - 0,48 = 0,22$.
Question 20

Ce nuage de points représente les fréquences cumulées croissantes d'une série statistique constituée par les salaires mensuels, en centaines d'euros, des salariés d'une entreprise.

Une seule des 4 affirmations suivantes est correcte. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros.
Should not have chosen
La moitié au moins des salaires mensuels est comprise entre 1 600 euros et 2 000 euros inclus.
Should have chosen

Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros.

Should not have chosen
On ne peut pas savoir.
Should not have chosen
Déjà, le salaire correspondant à une fréquence de $0,75$ est de 2000 euros (et pas 1900) : l'affirmation "Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros." est fausse. De même, l'affirmation "La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros." est fausse car la moitié des salaires est inférieure à 1800 euros. Le salaire 1 600 euros a une fréquence de $0,25$, et le salaire 2000 euros a une fréquence de $0,75$ : donc, comme entre $0,25$ et $0,75$, on a 50 % des effectifs, il vient que la moitié au moins des salaires est comprise entre 1 600 euros et 2 000 euros inclus.