Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x^2-1}{x^2+1}$
Votre réponseChoixCommentaireBonne réponse
$\lbrack -1 ; 1 \rbrack $
Should not have chosen
Selected
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Seules les racines du dénominateur $x^2+1$ de la fraction sont à exclure du domaine de définition.
Should not have chosen
$\mathbb{R} \setminus \{ -1; 1 \}$
Should not have chosen
$\mathbb{R}$
Should have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x+1}{\sqrt{x^2-1}}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} \setminus \{ -1 ; 1 \} $
Should not have chosen
$\rbrack -1 ; 1 \lbrack$
Should not have chosen
Selected
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should have chosen
$\rbrack -\infty ; -1 \rbrack \; \cup \; \lbrack 1 ; +\infty \lbrack$
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Une seule solution. Système régulier.
Should have chosen
Une infinité de solutions. Système lié.
Should have chosen
Aucune solution. Système incompatible.
Should have chosen
Exactement deux solutions.
Should not have chosen
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;3]$, elle est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Non, exemple $f(x)=\left| x \right|$ continue sur $[-1;3]$ non dérivable en $x=0$.
Question 7

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{\substack{h\to 0 \\ h>0}} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 8

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 9

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 10

La fonction dérivée de $x \mapsto \sqrt{x^2 + 1}$ est toujours positive.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Quelles sont les limites en $-\infty$ et $+\infty$ ? La monotonie est-elle possible ?
Question 11

La fonction $f \colon x \mapsto e^{-x}$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
décroissante sur $\mathbb{R}$.
Should have chosen
Selected
croissante sur $\mathbb{R}$.
Ce n'est pas $e^x$ mais $e^{-x}$. Calculer et étudier le signe de $f'(x)$.
Should not have chosen
négative sur $\mathbb{R}$.
Should not have chosen
Question 12

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Deux solutions.
Should not have chosen

Aucune solution.

Should not have chosen
Une seule solution.
Should have chosen
Question 13

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Should not have chosen
Question 14

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $e^{2a}+e^{2b} < 2e^{a+b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Étudier le signe puis développer l'expression $\left( e^a - e^b\right)^2$.
Question 15

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une asymptote verticale.

Should have chosen

une asymptote horizontale.

Should not have chosen
Selected

une tangente horizontale.

Il faudrait $\ln'(a)=0$ pour un réel $a>0$.
Should not have chosen
Question 16

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$0$
Should not have chosen
$3e$
Should have chosen
$e^2$
Should not have chosen
Question 17

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] -\infty ; \ln(4) \right]$
Should have chosen
$\left] 0 ; 4 \right]$
Should not have chosen
Selected
$\left] 0 ; \ln(4) \right]$
Revoir le domaine de définition de $x\mapsto e^x$.
Should not have chosen
Question 18

L'égalité $\displaystyle e^{\ln x}=x$ est vrai pour tout $x$ appartenant à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\mathbb{R}$
Should not have chosen
$\left[0;+\infty\right[$
Should not have chosen
$\left]0;+\infty\right[$
Should have chosen
Question 19

Ce nuage de points représente les fréquences cumulées croissantes d'une série statistique constituée par les salaires mensuels, en centaines d'euros, des salariés d'une entreprise.

Une seule des 4 affirmations suivantes est correcte. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse

Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros.

Should not have chosen
On ne peut pas savoir.
Should not have chosen
La moitié au moins des salaires mensuels est comprise entre 1 600 euros et 2 000 euros inclus.
Should have chosen
La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros.
Should not have chosen
Déjà, le salaire correspondant à une fréquence de $0,75$ est de 2000 euros (et pas 1900) : l'affirmation "Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros." est fausse. De même, l'affirmation "La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros." est fausse car la moitié des salaires est inférieure à 1800 euros. Le salaire 1 600 euros a une fréquence de $0,25$, et le salaire 2000 euros a une fréquence de $0,75$ : donc, comme entre $0,25$ et $0,75$, on a 50 % des effectifs, il vient que la moitié au moins des salaires est comprise entre 1 600 euros et 2 000 euros inclus.
Question 20

On a représenté ci-contre les fréquences cumulées croissantes d'une série statistique. Les fréquences ne sont pas en pourcentage. La somme totale des fréquences est donc de 1.

Une seule des 4 affirmations suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$Q_1=300$
Should not have chosen
Aucune n'est vraie.
Should not have chosen
$Q_3 = 450$
Should have chosen
$Me = 0,3$
Should not have chosen
Le troisième quartile noté $Q_3$ est une valeur qui coupe la population en deux parts inégales : 3/4 (cad 75 %) ont un caractère inférieur à $Q_3$ et 1/4 supérieur à $Q_3$. Ici 75 % correspond à une fréquence de 0,75 , on se place à 0,75 au niveau de l'axe des ordonnées (où se trouvent les fréquences cumulées croissantes), on rejoint la courbe, et on lit l'abscisse correspondante : cela donne la valeur de 450. qui est le troisième quartile. Par la même méthode, on obtiendrait par exemple que le premier quartile est d'environ 250 (on place cette fois 0,25 sur l'axe des ordonnées, on rejoint la courbe, et on lit l'abscisse correspondante).