Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x+1}{\sqrt{x^2-1}}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} \setminus \{ -1 ; 1 \} $
Should not have chosen
Selected
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should have chosen
$\rbrack -\infty ; -1 \rbrack \; \cup \; \lbrack 1 ; +\infty \lbrack$
Should not have chosen
$\rbrack -1 ; 1 \lbrack$
Should not have chosen
Question 2

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{1-x^3}{x^2-2}$
Votre réponseChoixCommentaireBonne réponse
$-\infty$
Should have chosen
$+\infty$
Should not have chosen
Selected
$0$
Mettre le terme de plus haute puissance $x^3$ en facteur au numérateur et au dénominateur, puis simplifier.
Should not have chosen
$1$
Should not have chosen
Question 3

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
Question 4

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
CommentaireBonne réponse
3
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 6

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
Selected
La fonction $f$ est continue sur $[-2;3]$.
Non, car $f$ n'est pas continue en $x\=-2$. Les limites à gauche et à droite de $x\=-2$ diffèrent.
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
Selected
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 7

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
Selected
$f' : x \mapsto 3(2x^2+3)^2$
Erreur de calcul. Revoir la règle de calcul de la dérivée des fonctions composées : $u(v(x))' = v'(x) \times u'(v(x))$.
$f' \: x \mapsto 6(2x^2+3)^2$
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 9

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à $\mathcal{C}_f$ au point $B(1 ; 5 )$ est parallèle à la droite d'équation $y=2x + 1$ alors $f'(1)=2$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
La tangente en $B( 1 ; 5 )$ parallèle à $y=2x + 1$ permet d'obtenir son  coefficient directeur. Le coefficient directeur permet de déduire le nombre dérivé $f'(1)$.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 11

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

deux solutions.

Should not have chosen
Selected

une unique solution.

Should have chosen
aucune solution.
Should not have chosen
Question 12

L'expression $e^x(2e^{-x}-1)$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$2-e^x$
Should have chosen
Selected
$2e^{-x^2}-e^x$
Revoir $e^a\times e^b = e^{a+b}$.
Should not have chosen
$-2(e^x)^2-e^x$
Should not have chosen
Question 13

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $2e^{a+b} = e^{2a} + e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Que se passe-t-il pour $a=0$ et $b=0$ ?
Question 14

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $e^{2a}+e^{2b} < 2e^{a+b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Étudier le signe puis développer l'expression $\left( e^a - e^b\right)^2$.
Question 15

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\ln(2)$
Should have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
$e^2$
Should not have chosen
Question 16

L'égalité $\displaystyle e^{\ln x}=x$ est vrai pour tout $x$ appartenant à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left]0;+\infty\right[$
Should have chosen
Selected
$\mathbb{R}$
Revoir le domaine de définition de $x \mapsto \ln(x)$.
Should not have chosen
$\left[0;+\infty\right[$
Should not have chosen
Question 17

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\mathbb{R}^*$
Should have chosen
$]0;+\infty [$
Should not have chosen
$\mathbb{R}$
Should not have chosen
Question 18

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x>1$
Should not have chosen
Selected
$1 < x < 1+e$
Should have chosen
$x<1+e$
Should not have chosen
Question 19

Ce tableau représente le nombre de fichiers mp3 installés dans les lecteurs mp3 des élèves d'une classe de 20 élèves.

La moyenne des fichiers est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\overline{x} = 116$
Should not have chosen
On ne peut pas savoir.
Should not have chosen
$\overline{x} = 79,5$
Should have chosen
$\overline{x} = 43$
Should not have chosen
Le principe lorsque l'on a un regroupement par classe est de remplacer chaque classe par son centre : le centre de la classe $[0;10[$ est 5, le centre de la classe $[10;50[$ est 30, le centre de la classe $[50;100[$ est 75, etc.
Ensuite on fait la moyenne de la série :
$\overline{x} = 5 \times 0,1 + 30 \times 0,3 + 75 \times 0,4 + 200 \times 0,2 = 79,5$
Question 20

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Le nombre total d'élèves du lycée toutes classes confondues est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected

858

Should not have chosen

On ne peut pas savoir.

Should not have chosen

781

Should not have chosen
880
Should have chosen
Si l'on note $N$ le nombre total d'élèves du lycée, on a :
$\frac{32,5}{100} \times N = 286$
donc $N = 286 \times \frac{100}{32,5} = 880$