Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-1}{e^x-2}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} $
Should not have chosen
Selected
$\mathbb{R} \setminus \{ \ln(2) \} $
Should have chosen
$\mathbb{R} \setminus \{ 1 \} $
Should not have chosen
$\mathbb{R} \setminus \{ \ln(2) ; 1 \} $
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{(x-1)(x-2)}{(x+2)(x+3)}$
Votre réponseChoixCommentaireBonne réponse
Selected
$\mathbb{R} \setminus \{ -3 ; -2 \}$
Should have chosen
$\mathbb{R} \setminus \{ -3 ; -2 ; 1; 2\}$
Should not have chosen
$\mathbb{R} \setminus \{ 1 ; 2 \}$
Should not have chosen
$\mathbb{R} \setminus \{ 2 ; 3 \}$
Should not have chosen
Question 3

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
Votre réponseCommentaireBonne réponse
x=3 y=43
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
Selected
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
C'est la région rouge. Il suffit de tester le point $(x=0;y=0)$.
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 6

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
Selected
$f' : x \mapsto 3(2x^2+3)^2$
Erreur de calcul. Revoir la règle de calcul de la dérivée des fonctions composées : $u(v(x))' = v'(x) \times u'(v(x))$.
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
$f' \: x \mapsto 6(2x^2+3)^2$
Question 7

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
Selected
La fonction $f$ est continue en $x=-2$.
Non, car les limites à gauche et à droite de $x\=-2$ sont différentes.
La fonction $f$ est continue sur $[-2;3]$.
Selected
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 9

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à $\mathcal{C}_f$ au point $B(1 ; 5 )$ est parallèle à la droite d'équation $y=2x + 1$ alors $f'(1)=2$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
La tangente en $B( 1 ; 5 )$ parallèle à $y=2x + 1$ permet d'obtenir son  coefficient directeur. Le coefficient directeur permet de déduire le nombre dérivé $f'(1)$.
Question 11

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Une seule solution.
Should have chosen

Aucune solution.

Should not have chosen
Selected
Deux solutions.
Poser $X = e^x$ et transformer l'équation en une équation du second degré en $X$. Pour en déduire finalement $x$.
Should not have chosen
Question 12

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 13

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $2e^{a+b} = e^{2a} + e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Que se passe-t-il pour $a=0$ et $b=0$ ?
Question 14

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Should not have chosen
Question 15

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une asymptote verticale.

Should have chosen

une tangente horizontale.

Should not have chosen

une asymptote horizontale.

Should not have chosen
Question 16

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x>1$
Should not have chosen
$1 < x < 1+e$
Should have chosen
$x<1+e$
Should not have chosen
Question 17

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$3e$
Should have chosen
$e^2$
Should not have chosen
$0$
Should not have chosen
Question 18

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] 0 ; \ln(4) \right]$
Should not have chosen
$\left] 0 ; 4 \right]$
Should not have chosen
$\left] -\infty ; \ln(4) \right]$
Should have chosen
Question 19

On a représenté sur un axe les premiers et troisièmes quartiles ainsi que la médiane de deux séries statistiques.

Une seule des affirmation suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
75 % au moins des valeurs de la série 1 sont inférieures à 5.
Should have chosen

On ne peut pas savoir.

Should not have chosen
50 % au moins des valeurs de la série 2 sont inférieures à 7.
Should not have chosen
Les valeurs de la série 1 sont inférieures aux valeurs de la série 2.
Should not have chosen
Dans ce type de représentation, le premier point est le premier quartile de la série, le second est la médiane et le troisième est le troisième quartile.
Le graphique de la série 1 permet en effet d'affirmer que : $Q_1=2$, $Me=3$ et $Q_3=5$.
Or dire $Q_3=5$ revient exactement à dire "75 % au moins des valeurs de la série 1 sont inférieures à 5 ", d'où la réponse.
Question 20

Ce diagramme représente les fréquences (en nombre décimal de 0 à 1) en fonction des valeurs d'un caractère.

Calculer la moyenne de la série.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$e = 0,3$
Should not have chosen
$\overline{x} = 108$
Should not have chosen

On ne peut pas savoir.

Should not have chosen
$\overline{x} = 108,75$
Should have chosen
$\overline{x} = 80 \times 0,25 + 90 \times 0,1 + 105 \times 0,3 + 120 \times 0,1 + 145 \times 0,25 = 108,75$