Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-5}{\ln(x-2)-1}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -2 ; \mathrm{e}-2 \lbrack  \; \cup \; \rbrack \mathrm{e}-2 ; +\infty \lbrack$
Should have chosen
$\rbrack -2 ; +\infty \lbrack$
Should not have chosen
$\mathbb{R} \setminus \{ \mathrm{e}-2 \} $
Should not have chosen
$\rbrack -2 ; \mathrm{e}-2 \lbrack \; \cup \; \rbrack \mathrm{e}-2 ; 5 \lbrack \; \cup \; \rbrack 5 ; +\infty \lbrack$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{\sqrt{x-1}}{x-2}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should not have chosen
$\mathbb{R} \setminus \{ 1 ; 2 \} $
Should not have chosen
$\lbrack 1 ; +\infty \lbrack$
Should not have chosen
$\lbrack 1 ; 2 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should have chosen
Question 3

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
CommentaireBonne réponse
3
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
Question 5

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
$f' : x \mapsto 3(2x^2+3)^2$
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
$f' \: x \mapsto 6(2x^2+3)^2$
Question 6

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ est-elle strictement décroissante sur $] -\infty ; 1 [$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
Quelle est le signe de $f'$ sur $] - \infty ; 1 [$ ? En déduire le sens de variation de $f$.
Question 10

La fonction dérivée de $x \mapsto \sqrt{x^2 + 1}$ est toujours positive.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
Quelles sont les limites en $-\infty$ et $+\infty$ ? La monotonie est-elle possible ?
Question 11

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

deux solutions.

Should not have chosen

une unique solution.

Should have chosen
aucune solution.
Should not have chosen
Question 12

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Should not have chosen
Question 13

La fonction $f \colon x \mapsto e^{-x}$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
décroissante sur $\mathbb{R}$.
Should have chosen
croissante sur $\mathbb{R}$.
Should not have chosen
négative sur $\mathbb{R}$.
Should not have chosen
Question 14

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
n'est négative que si $x$ est négatif.
Should not have chosen
n'est négative que si $x$ est positif.
Should not have chosen
n'est jamais négative.
Should not have chosen
est toujours négative.
Should have chosen
Question 15

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
$\ln(2)$
Should have chosen
$e^2$
Should not have chosen
Question 16

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln (-2)$
Should not have chosen
$\ln(2)$
Should not have chosen

aucune

Should have chosen
Question 17

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une asymptote horizontale.

Should not have chosen

une asymptote verticale.

Should have chosen

une tangente horizontale.

Should not have chosen
Question 18

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] 0 ; 4 \right]$
Should not have chosen
$\left] 0 ; \ln(4) \right]$
Should not have chosen
$\left] -\infty ; \ln(4) \right]$
Should have chosen
Question 19

On a représenté sur un axe les premiers et troisièmes quartiles ainsi que la médiane de deux séries statistiques.

Une seule des affirmation suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Les valeurs de la série 1 sont inférieures aux valeurs de la série 2.
Should not have chosen
50 % au moins des valeurs de la série 2 sont inférieures à 7.
Should not have chosen
75 % au moins des valeurs de la série 1 sont inférieures à 5.
Should have chosen

On ne peut pas savoir.

Should not have chosen
Dans ce type de représentation, le premier point est le premier quartile de la série, le second est la médiane et le troisième est le troisième quartile.
Le graphique de la série 1 permet en effet d'affirmer que : $Q_1=2$, $Me=3$ et $Q_3=5$.
Or dire $Q_3=5$ revient exactement à dire "75 % au moins des valeurs de la série 1 sont inférieures à 5 ", d'où la réponse.
Question 20

Ce tableau représente le nombre de fichiers mp3 installés dans les lecteurs mp3 des élèves d'une classe de 20 élèves.

La moyenne des fichiers est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
On ne peut pas savoir.
Should not have chosen
$\overline{x} = 43$
Should not have chosen
$\overline{x} = 116$
Should not have chosen
$\overline{x} = 79,5$
Should have chosen
Le principe lorsque l'on a un regroupement par classe est de remplacer chaque classe par son centre : le centre de la classe $[0;10[$ est 5, le centre de la classe $[10;50[$ est 30, le centre de la classe $[50;100[$ est 75, etc.
Ensuite on fait la moyenne de la série :
$\overline{x} = 5 \times 0,1 + 30 \times 0,3 + 75 \times 0,4 + 200 \times 0,2 = 79,5$