Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-1}{e^x-2}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} \setminus \{ 1 \} $
Should not have chosen
$\mathbb{R} \setminus \{ \ln(2) ; 1 \} $
Should not have chosen
$\mathbb{R} \setminus \{ \ln(2) \} $
Should have chosen
$\mathbb{R} $
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{\sqrt{x-1}}{x-2}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} \setminus \{ 1 ; 2 \} $
Should not have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should not have chosen
$\lbrack 1 ; +\infty \lbrack$
Should not have chosen
$\lbrack 1 ; 2 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should have chosen
Question 3

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
CommentaireBonne réponse
3
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 6

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
Selected
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
Selected
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 7

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
$f' : x \mapsto 3(2x^2+3)^2$
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
$f' \: x \mapsto 6(2x^2+3)^2$
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 9

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à $\mathcal{C}_f$ au point $B(1 ; 5 )$ est parallèle à la droite d'équation $y=2x + 1$ alors $f'(1)=2$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
La tangente en $B( 1 ; 5 )$ parallèle à $y=2x + 1$ permet d'obtenir son  coefficient directeur. Le coefficient directeur permet de déduire le nombre dérivé $f'(1)$.
Question 11

L'expression $e^x(2e^{-x}-1)$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$2e^{-x^2}-e^x$
Should not have chosen
$-2(e^x)^2-e^x$
Should not have chosen
$2-e^x$
Should have chosen
Question 12

La fonction $f \colon x \mapsto e^{-x}$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
négative sur $\mathbb{R}$.
Should not have chosen
croissante sur $\mathbb{R}$.
Should not have chosen
décroissante sur $\mathbb{R}$.
Should have chosen
Question 13

$\displaystyle\lim\limits_{x \to +\infty} e^{-2x^2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$0$
Should have chosen
$-\infty$
Should not have chosen
$+\infty$
Should not have chosen
Question 14

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $2e^{a+b}=e^{2a}+e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
Que se passe-t-il pour $a=0$ et $b=1$ ?
Revoir ses formules classiques :
$e^{a+b} = e^a\times e^b$
${e^a}^b = e^{a\times b}$
Question 15

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$]0;+\infty [$
Should not have chosen
$\mathbb{R}$
Should not have chosen
$\mathbb{R}^*$
Should have chosen
Question 16

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$3e$
Should have chosen
$0$
Should not have chosen
$e^2$
Should not have chosen
Question 17

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une asymptote verticale.

Should have chosen

une tangente horizontale.

Should not have chosen

une asymptote horizontale.

Should not have chosen
Question 18

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$e^2$
Should not have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
$\ln(2)$
Should have chosen
Question 19

On a représenté sur un axe les premiers et troisièmes quartiles ainsi que la médiane de deux séries statistiques.

Une seule des affirmation suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
50 % au moins des valeurs de la série 2 sont inférieures à 7.
Should not have chosen

On ne peut pas savoir.

Should not have chosen
Les valeurs de la série 1 sont inférieures aux valeurs de la série 2.
Should not have chosen
75 % au moins des valeurs de la série 1 sont inférieures à 5.
Should have chosen
Dans ce type de représentation, le premier point est le premier quartile de la série, le second est la médiane et le troisième est le troisième quartile.
Le graphique de la série 1 permet en effet d'affirmer que : $Q_1=2$, $Me=3$ et $Q_3=5$.
Or dire $Q_3=5$ revient exactement à dire "75 % au moins des valeurs de la série 1 sont inférieures à 5 ", d'où la réponse.
Question 20

Ce diagramme représente la répartition du nombre de buts marqués par match pour une équipe de football tout au long du championnat.

Le nombre moyen de buts marqués par match au cours du championnat est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\overline{x} = 0,5$
Should not have chosen
$\overline{x} = 1,37$
Should have chosen
$\overline{x} = 2$
Should not have chosen

On ne peut pas savoir.

Should not have chosen
On obtient ce résultat en faisant :
$\overline{x} = 0×0,45+1 \times 0,03+2 \times 0,29+3 \times 0,16+4 \times 0,07=1,37$