Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-1}{x^2-2x+1}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should not have chosen
$\mathbb{R}$
Should not have chosen
$\mathbb{R} \setminus \{ -1 \} $
Should not have chosen
Selected
$\mathbb{R} \setminus \{ 1 \} $
Should have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x+1}{\sqrt{x^2-1}}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -1 ; 1 \lbrack$
Should not have chosen
$\rbrack -\infty ; -1 \rbrack \; \cup \; \lbrack 1 ; +\infty \lbrack$
Should not have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should have chosen
Selected
$\mathbb{R} \setminus \{ -1 ; 1 \} $
Il faut exclure du domaine de définition non seulement les racines du polynôme $x^2-1$ mais aussi les valeurs de $x$ qui le rendent négatif.
Should not have chosen
Question 3

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
Votre réponseCommentaireBonne réponse
43
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Selected
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
Question 5

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
$f' : x \mapsto 3(2x^2+3)^2$
$f' \: x \mapsto 6(2x^2+3)^2$
Selected
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 7

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 8

La fonction dérivée de $x \mapsto \sqrt{x^2 + 1}$ est toujours positive.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Quelles sont les limites en $-\infty$ et $+\infty$ ? La monotonie est-elle possible ?
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un maximum en $x=2$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
C'est le maximum de $f'$, pas de $f$.
Question 10

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 11

$\displaystyle \lim\limits_{x \to +\infty} \frac{2e^x+1}{e^x+2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$+\infty$
Factoriser numérateur et dénominateur par $e^x$.
Should not have chosen
$1$
Should not have chosen
$\displaystyle -\frac{1}{2} $
Should not have chosen
$2$
Should have chosen
Question 12

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
Selected
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Revoir les limites classiques : $\lim \limits_{x \to -\infty} xe^x = 0$.
Should not have chosen
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
Question 13

La fonction $f \colon x \mapsto e^{-x}$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
décroissante sur $\mathbb{R}$.
Should have chosen
croissante sur $\mathbb{R}$.
Should not have chosen
négative sur $\mathbb{R}$.
Should not have chosen
Question 14

$\displaystyle\lim\limits_{x \to +\infty} e^{-2x^2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$-\infty$
Revoir les limites de $\lim\limits_{x \to +\infty}e^x$ et $\lim\limits_{x \to -\infty}e^x$.
Should not have chosen
$+\infty$
Should not have chosen
$0$
Should have chosen
Question 15

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$e^2$
Should not have chosen
Selected
$\ln\left(\dfrac{1}{2}\right)$
Erreur de signe dans le calcul.
Should not have chosen
$\ln(2)$
Should have chosen
Question 16

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$e^2$
Revoir $\ln'(x)=\frac{1}{x}$ et $\left(uv\right)'(x)=u'(x)v(x) + u(x)v'(x)$.
Should not have chosen
$0$
Should not have chosen
$3e$
Should have chosen
Question 17

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] 0 ; 4 \right]$
Should not have chosen
$\left] -\infty ; \ln(4) \right]$
Should have chosen
Selected
$\left] 0 ; \ln(4) \right]$
Revoir le domaine de définition de $x\mapsto e^x$.
Should not have chosen
Question 18

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

aucune

Should have chosen
Selected
$\ln(2)$
Erreur de calcul. Revoir le signe de $e^x$.
Should not have chosen
$\ln (-2)$
Should not have chosen
Question 19

On a représenté ci-contre les fréquences cumulées croissantes d'une série statistique. Les fréquences ne sont pas en pourcentage. La somme totale des fréquences est donc de 1.

Une seule des 4 affirmations suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$Q_3 = 450$
Should have chosen
$Q_1=300$
Should not have chosen
Selected
$Me = 0,3$
Should not have chosen
Aucune n'est vraie.
Should not have chosen
Le troisième quartile noté $Q_3$ est une valeur qui coupe la population en deux parts inégales : 3/4 (cad 75 %) ont un caractère inférieur à $Q_3$ et 1/4 supérieur à $Q_3$. Ici 75 % correspond à une fréquence de 0,75 , on se place à 0,75 au niveau de l'axe des ordonnées (où se trouvent les fréquences cumulées croissantes), on rejoint la courbe, et on lit l'abscisse correspondante : cela donne la valeur de 450. qui est le troisième quartile. Par la même méthode, on obtiendrait par exemple que le premier quartile est d'environ 250 (on place cette fois 0,25 sur l'axe des ordonnées, on rejoint la courbe, et on lit l'abscisse correspondante).
Question 20

Ce diagramme représente les fréquences (en nombre décimal de 0 à 1) en fonction des valeurs d'un caractère.

Calculer la moyenne de la série.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\overline{x} = 108,75$
Should have chosen
$\overline{x} = 108$
Should not have chosen
$e = 0,3$
Should not have chosen

On ne peut pas savoir.

Should not have chosen
$\overline{x} = 80 \times 0,25 + 90 \times 0,1 + 105 \times 0,3 + 120 \times 0,1 + 145 \times 0,25 = 108,75$