Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-5}{\ln(x-2)-1}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -2 ; \mathrm{e}-2 \lbrack \; \cup \; \rbrack \mathrm{e}-2 ; 5 \lbrack \; \cup \; \rbrack 5 ; +\infty \lbrack$
Should not have chosen
Selected
$\mathbb{R} \setminus \{ \mathrm{e}-2 \} $
Les valeurs de $x$ qui rendent $x+2$ négatif ou nul doivent être exclues du domaine de définition pour que le logarithme soit défini.
Should not have chosen
$\rbrack -2 ; \mathrm{e}-2 \lbrack  \; \cup \; \rbrack \mathrm{e}-2 ; +\infty \lbrack$
Should have chosen
$\rbrack -2 ; +\infty \lbrack$
Should not have chosen
Question 2

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to -\infty} x^3 - x^2$
Votre réponseChoixCommentaireBonne réponse
$1$
Should not have chosen
$-\infty$
Should have chosen
Selected
$+\infty$
Mettre le terme de plus haute puissance $x^3$ en facteur.
Should not have chosen
$0$
Should not have chosen
Question 3

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
Selected
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
Question 4

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Exactement deux solutions.
Should not have chosen
Selected
Une infinité de solutions. Système lié.
$\displaystyle (S)\begin{cases} x - y &= 0\\ 2x - 2y &= 0\end{cases} $
$E=\left\{ ( x = t; y = t ) \mathrm{pour tout} t\in \mathbb{R} \right\}$
Should have chosen
Une seule solution. Système régulier.
Should have chosen
Aucune solution. Système incompatible.
Should have chosen
Question 5

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{\substack{h\to 0 \\ h>0}} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;3]$, elle est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Non, exemple $f(x)=\left| x \right|$ continue sur $[-1;3]$ non dérivable en $x=0$.
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 8

La fonction dérivée de $x \mapsto \sqrt{x^2 + 1}$ est toujours positive.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Quelles sont les limites en $-\infty$ et $+\infty$ ? La monotonie est-elle possible ?
Question 9

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 10

La fonction $A$ définie et dérivable sur $[0 ; 1]$ telle que, pout tout $x$ de $[0 ; 1]$ , $\displaystyle A'(x) = \frac{2x}{(1+2x)^2}$ est positive sur $[0;1]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La dérivée est positive, ce qui n'entraîne pas que la fonction soit positive. Essayer avec $\displaystyle A = \frac{-1}{1+x^2}$.
Question 11

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Should not have chosen
Selected
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
Question 12

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 13

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $e^{2a}+e^{2b} < 2e^{a+b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Étudier le signe puis développer l'expression $\left( e^a - e^b\right)^2$.
Question 14

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Une seule solution.
Should have chosen

Aucune solution.

Should not have chosen
Selected
Deux solutions.
Poser $X = e^x$ et transformer l'équation en une équation du second degré en $X$. Pour en déduire finalement $x$.
Should not have chosen
Question 15

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$x<1+e$
Prendre en compte le domaine de définition de $x \mapsto \ln (x)$.
Should not have chosen
$1 < x < 1+e$
Should have chosen
$x>1$
Should not have chosen
Question 16

L'égalité $\displaystyle e^{\ln x}=x$ est vrai pour tout $x$ appartenant à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\left]0;+\infty\right[$
Should have chosen
$\mathbb{R}$
Should not have chosen
$\left[0;+\infty\right[$
Should not have chosen
Question 17

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$]0;+\infty [$
Should not have chosen
Selected
$\mathbb{R}^*$
Should have chosen
$\mathbb{R}$
Should not have chosen
Question 18

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] 0 ; \ln(4) \right]$
Should not have chosen
Selected
$\left] -\infty ; \ln(4) \right]$
Should have chosen
$\left] 0 ; 4 \right]$
Should not have chosen
Question 19

Ce nuage de points représente les fréquences cumulées croissantes d'une série statistique constituée par les salaires mensuels, en centaines d'euros, des salariés d'une entreprise.

Une seule des 4 affirmations suivantes est correcte. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros.
Should not have chosen
Selected
La moitié au moins des salaires mensuels est comprise entre 1 600 euros et 2 000 euros inclus.
Should have chosen

Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros.

Should not have chosen
On ne peut pas savoir.
Should not have chosen
Déjà, le salaire correspondant à une fréquence de $0,75$ est de 2000 euros (et pas 1900) : l'affirmation "Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros." est fausse. De même, l'affirmation "La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros." est fausse car la moitié des salaires est inférieure à 1800 euros. Le salaire 1 600 euros a une fréquence de $0,25$, et le salaire 2000 euros a une fréquence de $0,75$ : donc, comme entre $0,25$ et $0,75$, on a 50 % des effectifs, il vient que la moitié au moins des salaires est comprise entre 1 600 euros et 2 000 euros inclus.
Question 20

On a représenté ci-contre les fréquences cumulées croissantes d'une série statistique. Les fréquences ne sont pas en pourcentage. La somme totale des fréquences est donc de 1.

Une seule des 4 affirmations suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$Q_1=300$
Should not have chosen
Aucune n'est vraie.
Should not have chosen
$Me = 0,3$
Should not have chosen
$Q_3 = 450$
Should have chosen
Le troisième quartile noté $Q_3$ est une valeur qui coupe la population en deux parts inégales : 3/4 (cad 75 %) ont un caractère inférieur à $Q_3$ et 1/4 supérieur à $Q_3$. Ici 75 % correspond à une fréquence de 0,75 , on se place à 0,75 au niveau de l'axe des ordonnées (où se trouvent les fréquences cumulées croissantes), on rejoint la courbe, et on lit l'abscisse correspondante : cela donne la valeur de 450. qui est le troisième quartile. Par la même méthode, on obtiendrait par exemple que le premier quartile est d'environ 250 (on place cette fois 0,25 sur l'axe des ordonnées, on rejoint la courbe, et on lit l'abscisse correspondante).