Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{x^3+1}{2x-x^3}$
Votre réponseChoixCommentaireBonne réponse
Selected
$-1$
Should have chosen
$\dfrac{1}{2}$
Should not have chosen
$+\infty$
Should not have chosen
$-\infty$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x+1}{\sqrt{x^2-1}}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -\infty ; -1 \rbrack \; \cup \; \lbrack 1 ; +\infty \lbrack$
Should not have chosen
Selected
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should have chosen
$\rbrack -1 ; 1 \lbrack$
Should not have chosen
$\mathbb{R} \setminus \{ -1 ; 1 \} $
Should not have chosen
Question 3

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
Votre réponseCommentaireBonne réponse
33
Question 4

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Une seule solution. Système régulier.
$\displaystyle (S)\begin{cases} x + y &= 0\\ x - y &= 2\end{cases}$
$E=\left\{ ( x=1 ; y=-1) \right\}$
Should have chosen
Selected
Une infinité de solutions. Système lié.
$\displaystyle (S)\begin{cases} x - y &= 0\\ 2x - 2y &= 0\end{cases} $
$E=\left\{ ( x = t; y = t ) \mathrm{pour tout} t\in \mathbb{R} \right\}$
Should have chosen
Selected
Aucune solution. Système incompatible.
$\displaystyle (S)\begin{cases} x + y &= 0\\ x + y &= 1\end{cases}$
$E=\left\{ \empty \right\}$
Should have chosen
Exactement deux solutions.
Should not have chosen
Question 5

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
Selected
$f' : x \mapsto 3(2x^2+3)^2$
Erreur de calcul. Revoir la règle de calcul de la dérivée des fonctions composées : $u(v(x))' = v'(x) \times u'(v(x))$.
$f' \: x \mapsto 6(2x^2+3)^2$
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ est-elle strictement décroissante sur $] -\infty ; 1 [$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Quelle est le signe de $f'$ sur $] - \infty ; 1 [$ ? En déduire le sens de variation de $f$.
Question 10

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 11

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
n'est jamais négative.
Revoir le signe de $e^x$.
Should not have chosen
n'est négative que si $x$ est positif.
Should not have chosen
est toujours négative.
Should have chosen
n'est négative que si $x$ est négatif.
Should not have chosen
Question 12

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

deux solutions.

Should not have chosen
aucune solution.
Should not have chosen
Selected

une unique solution.

Should have chosen
Question 13

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Deux solutions.
Should not have chosen
Selected
Une seule solution.
Should have chosen

Aucune solution.

Should not have chosen
Question 14

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Should not have chosen
Question 15

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] 0 ; \ln(4) \right]$
Should not have chosen
$\left] 0 ; 4 \right]$
Should not have chosen
Selected
$\left] -\infty ; \ln(4) \right]$
Should have chosen
Question 16

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$3e$
Should have chosen
$e^2$
Should not have chosen
$0$
Should not have chosen
Question 17

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected

une asymptote horizontale.

Il faudrait $\lim\limits_{x\to\infty}{\ln(x)=c}$ où $c\in \mathbb{R}$.

Should not have chosen

une tangente horizontale.

Should not have chosen

une asymptote verticale.

Should have chosen
Question 18

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\ln(2)$
Should have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
$e^2$
Should not have chosen
Question 19

Voici la courbe des fréquences cumulées croissantes du nombre d'enfants moyen par famille en France en 2007.

Parmi les 4 affirmations suivantes, laquelle est correcte ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
22 % des familles ont un enfant unique.
Should have chosen
70 % des familles ont au moins 1 enfant.
Should not have chosen
90 % des familles ont au moins 2 enfants.
Should not have chosen
3 % des familles ont au plus 3 enfants.
Should not have chosen
Pour trouver la fréquence des familles ayant un seul enfant, on fait le calcul $0,7 - 0,48 = 0,22$.
Question 20

Ce diagramme représente la répartition du nombre de buts marqués par match pour une équipe de football tout au long du championnat.

Le nombre moyen de buts marqués par match au cours du championnat est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

On ne peut pas savoir.

Should not have chosen
$\overline{x} = 0,5$
Should not have chosen
$\overline{x} = 1,37$
Should have chosen
$\overline{x} = 2$
Should not have chosen
On obtient ce résultat en faisant :
$\overline{x} = 0×0,45+1 \times 0,03+2 \times 0,29+3 \times 0,16+4 \times 0,07=1,37$