Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{1-x^3}{x^2-2}$
Votre réponseChoixCommentaireBonne réponse
$1$
Should not have chosen
Selected
$-\infty$
Should have chosen
$+\infty$
Should not have chosen
$0$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x^2-1}{x^2+1}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should not have chosen
Selected
$\mathbb{R}$
Should have chosen
$\mathbb{R} \setminus \{ -1; 1 \}$
Should not have chosen
$\lbrack -1 ; 1 \rbrack $
Should not have chosen
Question 3

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Question 4

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Exactement deux solutions.
Should not have chosen
Une seule solution. Système régulier.
Should have chosen
Aucune solution. Système incompatible.
Should have chosen
Une infinité de solutions. Système lié.
Should have chosen
Question 5

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{h\to 0 \\ h>0} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;3]$, elle est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Non, exemple $f(x)=\left| x \right|$ continue sur $[-1;3]$ non dérivable en $x=0$.
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 8

La fonction dérivée de $x \mapsto \sqrt{x^2 + 1}$ est toujours positive.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Quelles sont les limites en $-\infty$ et $+\infty$ ? La monotonie est-elle possible ?
Question 9

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 11

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Deux solutions.
Poser $X = e^x$ et transformer l'équation en une équation du second degré en $X$. Pour en déduire finalement $x$.
Should not have chosen

Aucune solution.

Should not have chosen
Une seule solution.
Should have chosen
Question 12

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
n'est jamais négative.
Should not have chosen
n'est négative que si $x$ est positif.
Should not have chosen
n'est négative que si $x$ est négatif.
Should not have chosen
Selected
est toujours négative.
Should have chosen
Question 13

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $2e^{a+b}=e^{2a}+e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Que se passe-t-il pour $a=0$ et $b=1$ ?
Revoir ses formules classiques :
$e^{a+b} = e^a\times e^b$
${e^a}^b = e^{a\times b}$
Question 14

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $e^{2a}+e^{2b} < 2e^{a+b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Étudier le signe puis développer l'expression $\left( e^a - e^b\right)^2$.
Question 15

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\mathbb{R}$
Should not have chosen
$\mathbb{R}^*$
Should have chosen
$]0;+\infty [$
Should not have chosen
Question 16

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln(2)$
Should have chosen
$e^2$
Should not have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
Question 17

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$1 < x < 1+e$
Should have chosen
$x>1$
Should not have chosen
$x<1+e$
Should not have chosen
Question 18

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

aucune

Should have chosen
$\ln(2)$
Should not have chosen
$\ln (-2)$
Should not have chosen
Question 19

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Quelle est la proportion $\frac{post-bac}{première}$ ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\frac{3}{8}$
Should have chosen
$\frac{1}{3}$
Should not have chosen
$\frac{3}{7}$
Should not have chosen

On ne peut pas savoir.

Should not have chosen
Le pourcentage d'élèves en post-bac est égal à $100-(32,5+26,25+30) = 11,25 %$.
La proportion demandée est donc $\frac{11,25}{30}=0,375=\frac{3}{8}$.
Question 20

On a représenté ci-contre les fréquences cumulées croissantes d'une série statistique. Les fréquences ne sont pas en pourcentage. La somme totale des fréquences est donc de 1.

Une seule des 4 affirmations suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$Me = 0,3$
Should not have chosen
$Q_3 = 450$
Should have chosen
Aucune n'est vraie.
Should not have chosen
$Q_1=300$
Should not have chosen
Le troisième quartile noté $Q_3$ est une valeur qui coupe la population en deux parts inégales : 3/4 (cad 75 %) ont un caractère inférieur à $Q_3$ et 1/4 supérieur à $Q_3$. Ici 75 % correspond à une fréquence de 0,75 , on se place à 0,75 au niveau de l'axe des ordonnées (où se trouvent les fréquences cumulées croissantes), on rejoint la courbe, et on lit l'abscisse correspondante : cela donne la valeur de 450. qui est le troisième quartile. Par la même méthode, on obtiendrait par exemple que le premier quartile est d'environ 250 (on place cette fois 0,25 sur l'axe des ordonnées, on rejoint la courbe, et on lit l'abscisse correspondante).