Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{1-x^3}{x^2-2}$
Votre réponseChoixCommentaireBonne réponse
$1$
Should not have chosen
$0$
Should not have chosen
Selected
$-\infty$
Should have chosen
$+\infty$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{\sqrt{x-1}}{x-2}$
Votre réponseChoixCommentaireBonne réponse
$\lbrack 1 ; +\infty \lbrack$
Should not have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should not have chosen
Selected
$\lbrack 1 ; 2 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should have chosen
$\mathbb{R} \setminus \{ 1 ; 2 \} $
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Exactement deux solutions.
Should not have chosen
Selected
Une seule solution. Système régulier.
$\displaystyle (S)\begin{cases} x + y &= 0\\ x - y &= 2\end{cases}$
$E=\left\{ ( x=1 ; y=-1) \right\}$
Should have chosen
Une infinité de solutions. Système lié.
Should have chosen
Selected
Aucune solution. Système incompatible.
$\displaystyle (S)\begin{cases} x + y &= 0\\ x + y &= 1\end{cases}$
$E=\left\{ \empty \right\}$
Should have chosen
Question 4

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
Votre réponseCommentaireBonne réponse
33
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable en $a$ elle est continue en $a$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux

C'est un théorème du cours.

Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 9

La fonction $A$ définie et dérivable sur $[0 ; 1]$ telle que, pout tout $x$ de $[0 ; 1]$ , $\displaystyle A'(x) = \frac{2x}{(1+2x)^2}$ est positive sur $[0;1]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
La dérivée est positive, ce qui n'entraîne pas que la fonction soit positive. Essayer avec $\displaystyle A = \frac{-1}{1+x^2}$.
Question 10

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 11

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Une seule solution.
Should have chosen

Aucune solution.

Should not have chosen
Deux solutions.
Should not have chosen
Question 12

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $2e^{a+b} = e^{2a} + e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
Que se passe-t-il pour $a=0$ et $b=0$ ?
Question 13

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 14

L'expression $e^x(2e^{-x}-1)$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$2e^{-x^2}-e^x$
Should not have chosen
$2-e^x$
Should have chosen
$-2(e^x)^2-e^x$
Should not have chosen
Question 15

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une tangente horizontale.

Should not have chosen

une asymptote horizontale.

Should not have chosen

une asymptote verticale.

Should have chosen
Question 16

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln (-2)$
Should not have chosen
$\ln(2)$
Should not have chosen

aucune

Should have chosen
Question 17

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$]0;+\infty [$
Should not have chosen
$\mathbb{R}$
Should not have chosen
$\mathbb{R}^*$
Should have chosen
Question 18

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$3e$
Should have chosen
$e^2$
Should not have chosen
$0$
Should not have chosen
Question 19

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Quelle est la proportion $\frac{post-bac}{première}$ ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\frac{3}{8}$
Should have chosen
$\frac{3}{7}$
Should not have chosen

On ne peut pas savoir.

Should not have chosen
$\frac{1}{3}$
Should not have chosen
Le pourcentage d'élèves en post-bac est égal à $100-(32,5+26,25+30) = 11,25 %$.
La proportion demandée est donc $\frac{11,25}{30}=0,375=\frac{3}{8}$.
Question 20

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Le nombre total d'élèves du lycée toutes classes confondues est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

On ne peut pas savoir.

Should not have chosen

858

Should not have chosen

781

Should not have chosen
880
Should have chosen
Si l'on note $N$ le nombre total d'élèves du lycée, on a :
$\frac{32,5}{100} \times N = 286$
donc $N = 286 \times \frac{100}{32,5} = 880$