Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{1-x^3}{x^2-2}$
Votre réponseChoixCommentaireBonne réponse
$0$
Should not have chosen
Selected
$+\infty$
Mettre le terme de plus haute puissance $x^3$ en facteur au numérateur et au dénominateur, puis simplifier.
Should not have chosen
$-\infty$
Should have chosen
$1$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{(x-1)(x-2)}{(x+2)(x+3)}$
Votre réponseChoixCommentaireBonne réponse
Selected
$\mathbb{R} \setminus \{ -3 ; -2 ; 1; 2\}$
Seules les racines du dénominateur $(x+2)(x+3)$ de la fraction sont à exclure du domaine de définition.
Should not have chosen
$\mathbb{R} \setminus \{ 2 ; 3 \}$
Should not have chosen
$\mathbb{R} \setminus \{ -3 ; -2 \}$
Should have chosen
$\mathbb{R} \setminus \{ 1 ; 2 \}$
Should not have chosen
Question 3

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
CommentaireBonne réponse
3
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Selected
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
C'est la région violette. Il suffit de tester le point $(x=3; y=0)$.
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 6

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 7

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
$f' \: x \mapsto 6(2x^2+3)^2$
Selected
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
$f' : x \mapsto 3(2x^2+3)^2$
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 10

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ est-elle strictement décroissante sur $] -\infty ; 1 [$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Quelle est le signe de $f'$ sur $] - \infty ; 1 [$ ? En déduire le sens de variation de $f$.
Question 11

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Deux solutions.
Should not have chosen
Selected
Une seule solution.
Should have chosen

Aucune solution.

Should not have chosen
Question 12

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
est toujours négative.
Should have chosen
n'est négative que si $x$ est positif.
Should not have chosen
Selected
n'est jamais négative.
Revoir le signe de $e^x$.
Should not have chosen
n'est négative que si $x$ est négatif.
Should not have chosen
Question 13

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 14

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

deux solutions.

Should not have chosen
aucune solution.
Should not have chosen
Selected

une unique solution.

Should have chosen
Question 15

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$x>1$
Utiliser la fonction réciproque exponentielle $x \mapsto e^x$.
Should not have chosen
$x<1+e$
Should not have chosen
$1 < x < 1+e$
Should have chosen
Question 16

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\ln(2)$
Erreur de calcul. Revoir le signe de $e^x$.
Should not have chosen
$\ln (-2)$
Should not have chosen

aucune

Should have chosen
Question 17

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une tangente horizontale.

Should not have chosen
Selected

une asymptote horizontale.

Il faudrait $\lim\limits_{x\to\infty}{\ln(x)=c}$ où $c\in \mathbb{R}$.

Should not have chosen

une asymptote verticale.

Should have chosen
Question 18

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\left] 0 ; \ln(4) \right]$
Revoir le domaine de définition de $x\mapsto e^x$.
Should not have chosen
$\left] -\infty ; \ln(4) \right]$
Should have chosen
$\left] 0 ; 4 \right]$
Should not have chosen
Question 19

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Le nombre total d'élèves du lycée toutes classes confondues est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

On ne peut pas savoir.

Should not have chosen
880
Should have chosen

858

Should not have chosen

781

Should not have chosen
Si l'on note $N$ le nombre total d'élèves du lycée, on a :
$\frac{32,5}{100} \times N = 286$
donc $N = 286 \times \frac{100}{32,5} = 880$
Question 20

Voici le tableau des fréquences d'une série statistique :

Un seul des graphes suivants lui est associé. Lequel ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse


Should have chosen


Should not have chosen


Should not have chosen
On vérifie en effet que sur ce graphique, les bases des rectangles en bleu correspondent bien aux classes : par exemple le premier rectangle bleu a une base qui commence à 3 et se termine à 6 (c'est bien la classe). On procède de même pour toutes les bases des rectangles : on obtient bien les classes écrites dans le tableau. De plus, la hauteur du rectangle est alors de 10 unités, ce qui donne au total 30 petits carrés bleus (sachant que d'après la légende, 1 petit carré bleu = $0,01$), soit une fréquence égale à $30\times 0,01=0,330\times 0,01=0,3$ : cela correspond bien à la première colonne du tableau. On vérifie de même que les autres colonnes sont bien représentées.