Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to -\infty} x^3 - x^2$
Votre réponseChoixCommentaireBonne réponse
$1$
Should not have chosen
$+\infty$
Should not have chosen
$-\infty$
Should have chosen
Selected
$0$
Mettre le terme de plus haute puissance $x^3$ en facteur.
Should not have chosen
Question 2

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{1-x^3}{x^2-2}$
Votre réponseChoixCommentaireBonne réponse
Selected
$0$
Mettre le terme de plus haute puissance $x^3$ en facteur au numérateur et au dénominateur, puis simplifier.
Should not have chosen
$+\infty$
Should not have chosen
$-\infty$
Should have chosen
$1$
Should not have chosen
Question 3

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Question 4

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
CommentaireBonne réponse
3
Question 5

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
Selected
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
Selected
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 6

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
$f' : x \mapsto 3(2x^2+3)^2$
$f' \: x \mapsto 6(2x^2+3)^2$
Selected
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 9

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à $\mathcal{C}_f$ au point $B(1 ; 5 )$ est parallèle à la droite d'équation $y=2x + 1$ alors $f'(1)=2$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
La tangente en $B( 1 ; 5 )$ parallèle à $y=2x + 1$ permet d'obtenir son  coefficient directeur. Le coefficient directeur permet de déduire le nombre dérivé $f'(1)$.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 11

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 12

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

Aucune solution.

Should not have chosen
Selected
Deux solutions.
Poser $X = e^x$ et transformer l'équation en une équation du second degré en $X$. Pour en déduire finalement $x$.
Should not have chosen
Une seule solution.
Should have chosen
Question 13

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
Selected
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Revoir les limites classiques : $\lim \limits_{x \to -\infty} xe^x = 0$.
Should not have chosen
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
Question 14

$\displaystyle \lim\limits_{x \to +\infty} \frac{2e^x+1}{e^x+2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$2$
Should have chosen
$\displaystyle -\frac{1}{2} $
Should not have chosen
$1$
Should not have chosen
$+\infty$
Should not have chosen
Question 15

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\mathbb{R}$
Should not have chosen
$\mathbb{R}^*$
Should have chosen
$]0;+\infty [$
Should not have chosen
Question 16

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x<1+e$
Should not have chosen
$x>1$
Should not have chosen
$1 < x < 1+e$
Should have chosen
Question 17

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

aucune

Should have chosen
$\ln(2)$
Should not have chosen
$\ln (-2)$
Should not have chosen
Question 18

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln(2)$
Should have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
$e^2$
Should not have chosen
Question 19

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Le nombre total d'élèves du lycée toutes classes confondues est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

858

Should not have chosen

781

Should not have chosen

On ne peut pas savoir.

Should not have chosen
880
Should have chosen
Si l'on note $N$ le nombre total d'élèves du lycée, on a :
$\frac{32,5}{100} \times N = 286$
donc $N = 286 \times \frac{100}{32,5} = 880$
Question 20

On a représenté sur un axe les premiers et troisièmes quartiles ainsi que la médiane de deux séries statistiques.

Une seule des affirmation suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Les valeurs de la série 1 sont inférieures aux valeurs de la série 2.
Should not have chosen
50 % au moins des valeurs de la série 2 sont inférieures à 7.
Should not have chosen
75 % au moins des valeurs de la série 1 sont inférieures à 5.
Should have chosen

On ne peut pas savoir.

Should not have chosen
Dans ce type de représentation, le premier point est le premier quartile de la série, le second est la médiane et le troisième est le troisième quartile.
Le graphique de la série 1 permet en effet d'affirmer que : $Q_1=2$, $Me=3$ et $Q_3=5$.
Or dire $Q_3=5$ revient exactement à dire "75 % au moins des valeurs de la série 1 sont inférieures à 5 ", d'où la réponse.