Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{x^3+1}{2x-x^3}$
Votre réponseChoixCommentaireBonne réponse
$+\infty$
Should not have chosen
$\dfrac{1}{2}$
Should not have chosen
Selected
$-1$
Should have chosen
$-\infty$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{\sqrt{x-1}}{x-2}$
Votre réponseChoixCommentaireBonne réponse
$\lbrack 1 ; +\infty \lbrack$
Should not have chosen
Selected
$\lbrack 1 ; 2 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should not have chosen
$\mathbb{R} \setminus \{ 1 ; 2 \} $
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Une seule solution. Système régulier.
Should have chosen
Une infinité de solutions. Système lié.
Should have chosen
Exactement deux solutions.
Should not have chosen
Aucune solution. Système incompatible.
Should have chosen
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
Question 5

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{\substack{h\to 0 \\ h>0}} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 6

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable en $a$ elle est continue en $a$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux

C'est un théorème du cours.

Question 8

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ est-elle strictement décroissante sur $] -\infty ; 1 [$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
Quelle est le signe de $f'$ sur $] - \infty ; 1 [$ ? En déduire le sens de variation de $f$.
Question 10

La fonction $A$ définie et dérivable sur $[0 ; 1]$ telle que, pout tout $x$ de $[0 ; 1]$ , $\displaystyle A'(x) = \frac{2x}{(1+2x)^2}$ est positive sur $[0;1]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
La dérivée est positive, ce qui n'entraîne pas que la fonction soit positive. Essayer avec $\displaystyle A = \frac{-1}{1+x^2}$.
Question 11

$\displaystyle\lim\limits_{x \to +\infty} e^{-2x^2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$-\infty$
Should not have chosen
$0$
Should have chosen
$+\infty$
Should not have chosen
Question 12

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Une seule solution.
Should have chosen
Deux solutions.
Should not have chosen

Aucune solution.

Should not have chosen
Question 13

Soient $f$ et $g$ les fonctions définies sur $\mathbb{R}$ par : $f(x)=(x+1)e^{2x}$ et $\displaystyle g(x)=\frac{1-x}{e^{2x}}$. On a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\lim \limits_{x \to -\infty} f(x) = -\infty$
Should not have chosen
$\lim \limits_{x \to -\infty} g(x) = 0$
Should not have chosen
$\lim \limits_{x \to -\infty} \left( f\left(x\right) +g\left(x\right) \right)= +\infty$
Should have chosen
Question 14

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $e^{2a}+e^{2b} < 2e^{a+b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
Étudier le signe puis développer l'expression $\left( e^a - e^b\right)^2$.
Question 15

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln (-2)$
Should not have chosen
$\ln(2)$
Should not have chosen

aucune

Should have chosen
Question 16

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
$\ln(2)$
Should have chosen
$e^2$
Should not have chosen
Question 17

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x>1$
Should not have chosen
$1 < x < 1+e$
Should have chosen
$x<1+e$
Should not have chosen
Question 18

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\mathbb{R}$
Should not have chosen
$\mathbb{R}^*$
Should have chosen
$]0;+\infty [$
Should not have chosen
Question 19

Ce nuage de points représente les fréquences cumulées croissantes d'une série statistique constituée par les salaires mensuels, en centaines d'euros, des salariés d'une entreprise.

Une seule des 4 affirmations suivantes est correcte. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse

Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros.

Should not have chosen
On ne peut pas savoir.
Should not have chosen
La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros.
Should not have chosen
La moitié au moins des salaires mensuels est comprise entre 1 600 euros et 2 000 euros inclus.
Should have chosen
Déjà, le salaire correspondant à une fréquence de $0,75$ est de 2000 euros (et pas 1900) : l'affirmation "Trois-quarts des salaires mensuels sont inférieurs à 1 900 euros." est fausse. De même, l'affirmation "La moitié au moins des salaires mensuels sont supérieurs ou égaux à 1 900 euros." est fausse car la moitié des salaires est inférieure à 1800 euros. Le salaire 1 600 euros a une fréquence de $0,25$, et le salaire 2000 euros a une fréquence de $0,75$ : donc, comme entre $0,25$ et $0,75$, on a 50 % des effectifs, il vient que la moitié au moins des salaires est comprise entre 1 600 euros et 2 000 euros inclus.
Question 20

Ce diagramme représente les fréquences (en nombre décimal de 0 à 1) en fonction des valeurs d'un caractère.

Calculer la moyenne de la série.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$e = 0,3$
Should not have chosen
$\overline{x} = 108,75$
Should have chosen

On ne peut pas savoir.

Should not have chosen
$\overline{x} = 108$
Should not have chosen
$\overline{x} = 80 \times 0,25 + 90 \times 0,1 + 105 \times 0,3 + 120 \times 0,1 + 145 \times 0,25 = 108,75$