Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{\sqrt{x-1}}{x-2}$
Votre réponseChoixCommentaireBonne réponse
$\lbrack 1 ; +\infty \lbrack$
Should not have chosen
$\mathbb{R} \setminus \{ 1 ; 2 \} $
Should not have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should not have chosen
Selected
$\lbrack 1 ; 2 \lbrack \; \cup \; \rbrack 2 ; +\infty \lbrack$
Should have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-5}{\ln(x-2)-1}$
Votre réponseChoixCommentaireBonne réponse
Selected
$\mathbb{R} \setminus \{ \mathrm{e}-2 \} $
Les valeurs de $x$ qui rendent $x+2$ négatif ou nul doivent être exclues du domaine de définition pour que le logarithme soit défini.
Should not have chosen
$\rbrack -2 ; \mathrm{e}-2 \lbrack \; \cup \; \rbrack \mathrm{e}-2 ; 5 \lbrack \; \cup \; \rbrack 5 ; +\infty \lbrack$
Should not have chosen
$\rbrack -2 ; \mathrm{e}-2 \lbrack  \; \cup \; \rbrack \mathrm{e}-2 ; +\infty \lbrack$
Should have chosen
$\rbrack -2 ; +\infty \lbrack$
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Une seule solution. Système régulier.
Should have chosen
Une infinité de solutions. Système lié.
Should have chosen
Aucune solution. Système incompatible.
Should have chosen
Selected
Exactement deux solutions.
L'existence de plusieurs solutions pour ce système entraîne géométriquement toute une droite infinie de solutions.
Should not have chosen
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Question 5

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{\substack{h\to 0 \\ h>0}} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;3]$, elle est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Non, exemple $f(x)=\left| x \right|$ continue sur $[-1;3]$ non dérivable en $x=0$.
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à $\mathcal{C}_f$ au point $B(1 ; 5 )$ est parallèle à la droite d'équation $y=2x + 1$ alors $f'(1)=2$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
La tangente en $B( 1 ; 5 )$ parallèle à $y=2x + 1$ permet d'obtenir son  coefficient directeur. Le coefficient directeur permet de déduire le nombre dérivé $f'(1)$.
Question 9

Soit $L$ une fonction définie et dérivable sur $]0 ; +\infty [$ telle que pour tout réel $x$ de $]0; +\infty[$, $L'(x) = \dfrac{1}{x}$ et $L(1)=0$.
Alors la fonction $L$ est négative sur $] 0 ; 1 [$ et positive sur $]1 ; +\infty [$
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
À partir de l'énoncé, dresser le tableau de signe de $L'$ en déduire le sens de variation de $L$ en inscrivant la valeur de $L(1)=0$.
Question 10

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ est-elle strictement décroissante sur $] -\infty ; 1 [$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Quelle est le signe de $f'$ sur $] - \infty ; 1 [$ ? En déduire le sens de variation de $f$.
Question 11

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 12

$\displaystyle \lim\limits_{x \to +\infty} \frac{2e^x+1}{e^x+2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\displaystyle -\frac{1}{2} $
Should not have chosen
Selected
$+\infty$
Factoriser numérateur et dénominateur par $e^x$.
Should not have chosen
$2$
Should have chosen
$1$
Should not have chosen
Question 13

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
est toujours négative.
Should have chosen
n'est négative que si $x$ est négatif.
Should not have chosen
n'est jamais négative.
Should not have chosen
n'est négative que si $x$ est positif.
Should not have chosen
Question 14

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une unique solution.

Should have chosen

deux solutions.

Should not have chosen
Selected
aucune solution.
Étudier la fonction $f(x)$ et dresser le tableau de variation.
Should not have chosen
Question 15

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\mathbb{R}$
Should not have chosen
$]0;+\infty [$
Should not have chosen
Selected
$\mathbb{R}^*$
Should have chosen
Question 16

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$1 < x < 1+e$
Should have chosen
$x>1$
Should not have chosen
$x<1+e$
Should not have chosen
Question 17

L'égalité $\displaystyle e^{\ln x}=x$ est vrai pour tout $x$ appartenant à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left[0;+\infty\right[$
Should not have chosen
$\mathbb{R}$
Should not have chosen
$\left]0;+\infty\right[$
Should have chosen
Question 18

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$e^2$
Should not have chosen
$3e$
Should have chosen
$0$
Should not have chosen
Question 19

Ce diagramme représente la répartition du nombre de buts marqués par match pour une équipe de football tout au long du championnat.

Le nombre moyen de buts marqués par match au cours du championnat est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\overline{x} = 0,5$
Should not have chosen
$\overline{x} = 1,37$
Should have chosen
$\overline{x} = 2$
Should not have chosen

On ne peut pas savoir.

Should not have chosen
On obtient ce résultat en faisant :
$\overline{x} = 0×0,45+1 \times 0,03+2 \times 0,29+3 \times 0,16+4 \times 0,07=1,37$
Question 20

Voici le tableau des fréquences d'une série statistique :

Un seul des graphes suivants lui est associé. Lequel ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse


Should have chosen


Should not have chosen


Should not have chosen
On vérifie en effet que sur ce graphique, les bases des rectangles en bleu correspondent bien aux classes : par exemple le premier rectangle bleu a une base qui commence à 3 et se termine à 6 (c'est bien la classe). On procède de même pour toutes les bases des rectangles : on obtient bien les classes écrites dans le tableau. De plus, la hauteur du rectangle est alors de 10 unités, ce qui donne au total 30 petits carrés bleus (sachant que d'après la légende, 1 petit carré bleu = $0,01$), soit une fréquence égale à $30\times 0,01=0,330\times 0,01=0,3$ : cela correspond bien à la première colonne du tableau. On vérifie de même que les autres colonnes sont bien représentées.