Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-1}{e^x-2}$
Votre réponseChoixCommentaireBonne réponse
Selected
$\mathbb{R} \setminus \{ \ln(2) \} $
Should have chosen
$\mathbb{R} $
Should not have chosen
$\mathbb{R} \setminus \{ \ln(2) ; 1 \} $
Should not have chosen
$\mathbb{R} \setminus \{ 1 \} $
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-5}{\ln(x-2)-1}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -2 ; \mathrm{e}-2 \lbrack  \; \cup \; \rbrack \mathrm{e}-2 ; +\infty \lbrack$
Should have chosen
$\mathbb{R} \setminus \{ \mathrm{e}-2 \} $
Should not have chosen
Selected
$\rbrack -2 ; \mathrm{e}-2 \lbrack \; \cup \; \rbrack \mathrm{e}-2 ; 5 \lbrack \; \cup \; \rbrack 5 ; +\infty \lbrack$
Les valeurs qui annulent le numérateur ne sont pas à exclure du domaine de définition.
Should not have chosen
$\rbrack -2 ; +\infty \lbrack$
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Exactement deux solutions.
Should not have chosen
Selected
Aucune solution. Système incompatible.
$\displaystyle (S)\begin{cases} x + y &= 0\\ x + y &= 1\end{cases}$
$E=\left\{ \empty \right\}$
Should have chosen
Une infinité de solutions. Système lié.
Should have chosen
Une seule solution. Système régulier.
Should have chosen
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable en $a$ elle est continue en $a$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux

C'est un théorème du cours.

Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 7

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{h\to 0 \\ h>0} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 8

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 9

La fonction dérivée de $x \mapsto \sqrt{x^2 + 1}$ est toujours positive.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Quelles sont les limites en $-\infty$ et $+\infty$ ? La monotonie est-elle possible ?
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 11

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $2e^{a+b}=e^{2a}+e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Que se passe-t-il pour $a=0$ et $b=1$ ?
Revoir ses formules classiques :
$e^{a+b} = e^a\times e^b$
${e^a}^b = e^{a\times b}$
Question 12

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Deux solutions.
Should not have chosen

Aucune solution.

Should not have chosen
Selected
Une seule solution.
Should have chosen
Question 13

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

deux solutions.

Should not have chosen
Selected

une unique solution.

Should have chosen
aucune solution.
Should not have chosen
Question 14

$\displaystyle \lim\limits_{x \to +\infty} \frac{2e^x+1}{e^x+2}$ est égale à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$2$
Should have chosen
$\displaystyle -\frac{1}{2} $
Should not have chosen
$1$
Should not have chosen
$+\infty$
Should not have chosen
Question 15

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln (-2)$
Should not have chosen
$\ln(2)$
Should not have chosen
Selected

aucune

Should have chosen
Question 16

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] -\infty ; \ln(4) \right]$
Should have chosen
$\left] 0 ; 4 \right]$
Should not have chosen
$\left] 0 ; \ln(4) \right]$
Should not have chosen
Question 17

L'égalité $\displaystyle e^{\ln x}=x$ est vrai pour tout $x$ appartenant à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left[0;+\infty\right[$
Should not have chosen
$\left]0;+\infty\right[$
Should have chosen
$\mathbb{R}$
Should not have chosen
Question 18

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x>1$
Should not have chosen
$1 < x < 1+e$
Should have chosen
$x<1+e$
Should not have chosen
Question 19

Ce tableau représente le nombre de fichiers mp3 installés dans les lecteurs mp3 des élèves d'une classe de 20 élèves.

La moyenne des fichiers est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\overline{x} = 116$
Should not have chosen
$\overline{x} = 79,5$
Should have chosen
$\overline{x} = 43$
Should not have chosen
On ne peut pas savoir.
Should not have chosen
Le principe lorsque l'on a un regroupement par classe est de remplacer chaque classe par son centre : le centre de la classe $[0;10[$ est 5, le centre de la classe $[10;50[$ est 30, le centre de la classe $[50;100[$ est 75, etc.
Ensuite on fait la moyenne de la série :
$\overline{x} = 5 \times 0,1 + 30 \times 0,3 + 75 \times 0,4 + 200 \times 0,2 = 79,5$
Question 20

Voici la courbe des fréquences cumulées croissantes du nombre d'enfants moyen par famille en France en 2007.

Parmi les 4 affirmations suivantes, laquelle est correcte ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
70 % des familles ont au moins 1 enfant.
Should not have chosen
22 % des familles ont un enfant unique.
Should have chosen
3 % des familles ont au plus 3 enfants.
Should not have chosen
90 % des familles ont au moins 2 enfants.
Should not have chosen
Pour trouver la fréquence des familles ayant un seul enfant, on fait le calcul $0,7 - 0,48 = 0,22$.