Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{(x-1)(x-2)}{(x+2)(x+3)}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} \setminus \{ 2 ; 3 \}$
Should not have chosen
$\mathbb{R} \setminus \{ -3 ; -2 ; 1; 2\}$
Should not have chosen
$\mathbb{R} \setminus \{ 1 ; 2 \}$
Should not have chosen
Selected
$\mathbb{R} \setminus \{ -3 ; -2 \}$
Should have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-1}{e^x-2}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} $
Should not have chosen
Selected
$\mathbb{R} \setminus \{ \ln(2) ; 1 \} $
Seules les racines du dénominateur $e^x-2$ de la fraction sont à exclure du domaine de définition.
Should not have chosen
$\mathbb{R} \setminus \{ 1 \} $
Should not have chosen
$\mathbb{R} \setminus \{ \ln(2) \} $
Should have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Une seule solution. Système régulier.
Should have chosen
Une infinité de solutions. Système lié.
Should have chosen
Selected
Exactement deux solutions.
L'existence de plusieurs solutions pour ce système entraîne géométriquement toute une droite infinie de solutions.
Should not have chosen
Aucune solution. Système incompatible.
Should have chosen
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;1]$ et sur $[1;3]$ alors $f$ est continue sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
$f$ est définie sur l'intervalle $[-1;3]$.
De plus les deux intervalles $[-1;1]$ et $[1;3]$ se chevauchent.
Enfin, autour du point $x=1$, on pose $f(1)=a$, il ne reste qu'à comparer la limite à droite et à gauche de $f(x)$ avec la valeur de $f(1)=a$.
Question 7

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{h\to 0 \\ h>0} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 8

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un maximum en $x=2$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
C'est le maximum de $f'$, pas de $f$.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 11

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $f(x)=(x+1)e^{2x}$.
Pour tout réel $x$, on a :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$f'(x)=2f(x)$
Should not have chosen
$f'(x) = 2(x+1)f(x)$
Should not have chosen
Selected
$f'(x)-2f(x)=e^{2x}$
Should have chosen
Question 12

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

Aucune solution.

Should not have chosen
Deux solutions.
Should not have chosen
Selected
Une seule solution.
Should have chosen
Question 13

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
aucune solution.
Should not have chosen

une unique solution.

Should have chosen

deux solutions.

Should not have chosen
Question 14

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $2e^{a+b} = e^{2a} + e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Faux
Que se passe-t-il pour $a=0$ et $b=0$ ?
Question 15

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$3e$
Should have chosen
$e^2$
Should not have chosen
$0$
Should not have chosen
Question 16

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x>1$
Should not have chosen
$x<1+e$
Should not have chosen
$1 < x < 1+e$
Should have chosen
Question 17

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln (-2)$
Should not have chosen

aucune

Should have chosen
$\ln(2)$
Should not have chosen
Question 18

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une tangente horizontale.

Should not have chosen

une asymptote verticale.

Should have chosen

une asymptote horizontale.

Should not have chosen
Question 19

Ce diagramme représente la répartition du nombre de buts marqués par match pour une équipe de football tout au long du championnat.

Le nombre moyen de buts marqués par match au cours du championnat est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

On ne peut pas savoir.

Should not have chosen
$\overline{x} = 1,37$
Should have chosen
$\overline{x} = 2$
Should not have chosen
$\overline{x} = 0,5$
Should not have chosen
On obtient ce résultat en faisant :
$\overline{x} = 0×0,45+1 \times 0,03+2 \times 0,29+3 \times 0,16+4 \times 0,07=1,37$
Question 20

Voici la courbe des fréquences cumulées croissantes du nombre d'enfants moyen par famille en France en 2007.

Parmi les 4 affirmations suivantes, laquelle est correcte ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
3 % des familles ont au plus 3 enfants.
Should not have chosen
70 % des familles ont au moins 1 enfant.
Should not have chosen
22 % des familles ont un enfant unique.
Should have chosen
90 % des familles ont au moins 2 enfants.
Should not have chosen
Pour trouver la fréquence des familles ayant un seul enfant, on fait le calcul $0,7 - 0,48 = 0,22$.