Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-1}{e^x-2}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} $
Should not have chosen
$\mathbb{R} \setminus \{ \ln(2) ; 1 \} $
Should not have chosen
$\mathbb{R} \setminus \{ 1 \} $
Should not have chosen
Selected
$\mathbb{R} \setminus \{ \ln(2) \} $
Should have chosen
Question 2

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \dfrac{1-x^3}{x^2-2}$
Votre réponseChoixCommentaireBonne réponse
$0$
Should not have chosen
$-\infty$
Should have chosen
$1$
Should not have chosen
Selected
$+\infty$
Mettre le terme de plus haute puissance $x^3$ en facteur au numérateur et au dénominateur, puis simplifier.
Should not have chosen
Question 3

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
Selected
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
C'est la région violette. Il suffit de tester le point $(x=3; y=0)$.
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
Question 4

Considérons le système suivant :
$\displaystyle (S)\begin{cases} 2x+y & = 10 \\ 3x-y & = 5 \end{cases}$
Quelle est la valeur de la solution $x$ ?
Votre réponseCommentaireBonne réponse
33
Question 5

Soit $f$ la fonction définie sur $\mathbb{R}$ par $f(x)=(2x^2+3)^3$. La fonction dérivée de $f$ est :
Votre réponseChoixCommentaireBonne réponse
Selected
$f' : x \mapsto 12x(2x^2+3)^2$
Should have chosen
$f' : x \mapsto 3(2x^2+3)^2$
$f' \: x \mapsto 6(2x^2+3)^2$
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;3]$, elle est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Non, exemple $f(x)=\left| x \right|$ continue sur $[-1;3]$ non dérivable en $x=0$.
Question 7

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 8

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 9

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 10

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ est-elle strictement décroissante sur $] -\infty ; 1 [$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Quelle est le signe de $f'$ sur $] - \infty ; 1 [$ ? En déduire le sens de variation de $f$.
Question 11

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
n'est négative que si $x$ est négatif.
Should not have chosen
Selected
est toujours négative.
Should have chosen
n'est jamais négative.
Should not have chosen
n'est négative que si $x$ est positif.
Should not have chosen
Question 12

Soit $f$ la fonction définie sur $\mathbb{R}$ par: $\displaystyle f(x)=(x+1)e^{2x}$.
L'équation $f(x)=1$   admet dans $\mathbb{R}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une unique solution.

Should have chosen
aucune solution.
Should not have chosen
Selected

deux solutions.

Étudier la fonction $f(x)$ et dresser le tableau de variation.
Should not have chosen
Question 13

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $e^{2a}+e^{2b} < 2e^{a+b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Étudier le signe puis développer l'expression $\left( e^a - e^b\right)^2$.
Question 14

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $2e^{a+b}=e^{2a}+e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Que se passe-t-il pour $a=0$ et $b=1$ ?
Revoir ses formules classiques :
$e^{a+b} = e^a\times e^b$
${e^a}^b = e^{a\times b}$
Question 15

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x<1+e$
Should not have chosen
Selected
$1 < x < 1+e$
Should have chosen
$x>1$
Should not have chosen
Question 16

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$e^2$
Should not have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
Selected
$\ln(2)$
Should have chosen
Question 17

Soit $f$ la fonction définie par $f(x)=\ln\left(x^2\right)$.
L'ensemble de définition de $f$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$]0;+\infty [$
Que se passe-t-il pour $x=-1$ ?
Il faut résoudre $x^2>0$.
Should not have chosen
$\mathbb{R}$
Should not have chosen
$\mathbb{R}^*$
Should have chosen
Question 18

L'équation $e^x=-2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln(2)$
Should not have chosen
$\ln (-2)$
Should not have chosen
Selected

aucune

Should have chosen
Question 19

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Quelle est la proportion $\frac{post-bac}{première}$ ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse

On ne peut pas savoir.

Should not have chosen
$\frac{3}{7}$
Should not have chosen
Selected
$\frac{3}{8}$
Should have chosen
$\frac{1}{3}$
Should not have chosen
Le pourcentage d'élèves en post-bac est égal à $100-(32,5+26,25+30) = 11,25 %$.
La proportion demandée est donc $\frac{11,25}{30}=0,375=\frac{3}{8}$.
Question 20

On a représenté sur un axe les premiers et troisièmes quartiles ainsi que la médiane de deux séries statistiques.

Une seule des affirmation suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
75 % au moins des valeurs de la série 1 sont inférieures à 5.
Should have chosen
Selected
50 % au moins des valeurs de la série 2 sont inférieures à 7.
Should not have chosen

On ne peut pas savoir.

Should not have chosen
Les valeurs de la série 1 sont inférieures aux valeurs de la série 2.
Should not have chosen
Dans ce type de représentation, le premier point est le premier quartile de la série, le second est la médiane et le troisième est le troisième quartile.
Le graphique de la série 1 permet en effet d'affirmer que : $Q_1=2$, $Me=3$ et $Q_3=5$.
Or dire $Q_3=5$ revient exactement à dire "75 % au moins des valeurs de la série 1 sont inférieures à 5 ", d'où la réponse.