Quiz de prérentrée

Question 1

Quelle est la valeur de cette limite ? $\displaystyle \lim_{x\to +\infty} \sqrt{x+1}-\sqrt{x}$
Votre réponseChoixCommentaireBonne réponse
Selected
$+\infty$
Utiliser la quantité conjuguée de $\sqrt{x+1}-\sqrt{x}$. Multiplier par $\dfrac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}$.
Should not have chosen
$0$
Should have chosen
$1$
Should not have chosen
$-\infty$
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x-1}{x^2-2x+1}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R}$
Should not have chosen
$\mathbb{R} \setminus \{ 1 \} $
Should have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should not have chosen
Selected
$\mathbb{R} \setminus \{ -1 \} $
Seules les racines du dénominateur $x^2-2x+1$ de la fraction sont à exclure du domaine de définition.
Should not have chosen
Question 3

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Une infinité de solutions. Système lié.
Should have chosen
Selected
Une seule solution. Système régulier.
$\displaystyle (S)\begin{cases} x + y &= 0\\ x - y &= 2\end{cases}$
$E=\left\{ ( x=1 ; y=-1) \right\}$
Should have chosen
Aucune solution. Système incompatible.
Should have chosen
Exactement deux solutions.
Should not have chosen
Question 4

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
Selected
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
C'est la région violette. Il suffit de tester le point $(x=3; y=0)$.
Should not have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est continue sur $[-1;3]$, elle est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Non, exemple $f(x)=\left| x \right|$ continue sur $[-1;3]$ non dérivable en $x=0$.
Question 6

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable en $a$ elle est continue en $a$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux

C'est un théorème du cours.

Question 7

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
La fonction $f$ est continue en $x=-2$.
La fonction $f$ est continue sur $[-2;3]$.
Selected
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
Selected
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 8

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un minimum en $x=1$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Étudier le signe de $f'$ à gauche et à droite de $x=1$. En déduire le sens de variation de $f$ et conclure sur la nature du point de la courbe de $f$ d'abscisse $x=1$.
Question 9

La fonction $A$ définie et dérivable sur $[0 ; 1]$ telle que, pout tout $x$ de $[0 ; 1]$ , $\displaystyle A'(x) = \frac{2x}{(1+2x)^2}$ est positive sur $[0;1]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La dérivée est positive, ce qui n'entraîne pas que la fonction soit positive. Essayer avec $\displaystyle A = \frac{-1}{1+x^2}$.
Question 10

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si la tangente à la courbe $\mathcal{C}_f$ au point $A(0 ; 2)$ est la droite d'équation $y=2$ alors $f'(0)=2$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
La tangente en $x=0$ est-elle horizontale ? Si oui, que vaut $f'(0)$ ?
Question 11

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $2e^{a+b} = e^{2a} + e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Que se passe-t-il pour $a=0$ et $b=0$ ?
Question 12

Cette affirmation est-elle vraie ou fausse ?
Il existe un réel $a$ et un réel $b$ tels que $e^{2a}+e^{2b} < 2e^{a+b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Étudier le signe puis développer l'expression $\left( e^a - e^b\right)^2$.
Question 13

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Vrai
Should have chosen
Selected
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 14

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $2e^{a+b}=e^{2a}+e^{2b}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Que se passe-t-il pour $a=0$ et $b=1$ ?
Revoir ses formules classiques :
$e^{a+b} = e^a\times e^b$
${e^a}^b = e^{a\times b}$
Question 15

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
Selected
$\ln(2)$
Should have chosen
$e^2$
Should not have chosen
Question 16

L'inégalité $\ln (x-1) < 1$ est vérifiée pour :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$x<1+e$
Should not have chosen
Selected
$1 < x < 1+e$
Should have chosen
$x>1$
Should not have chosen
Question 17

L'égalité $\displaystyle e^{\ln x}=x$ est vrai pour tout $x$ appartenant à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$\mathbb{R}$
Revoir le domaine de définition de $x \mapsto \ln(x)$.
Should not have chosen
$\left[0;+\infty\right[$
Should not have chosen
$\left]0;+\infty\right[$
Should have chosen
Question 18

La représentation graphique de la fonction logarithme népérien admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

une asymptote verticale.

Should have chosen
Selected

une tangente horizontale.

Il faudrait $\ln'(a)=0$ pour un réel $a>0$.
Should not have chosen

une asymptote horizontale.

Should not have chosen
Question 19

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Le nombre total d'élèves du lycée toutes classes confondues est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse

On ne peut pas savoir.

Should not have chosen

858

Should not have chosen

781

Should not have chosen
880
Should have chosen
Si l'on note $N$ le nombre total d'élèves du lycée, on a :
$\frac{32,5}{100} \times N = 286$
donc $N = 286 \times \frac{100}{32,5} = 880$
Question 20

Voici le tableau des fréquences d'une série statistique :

Un seul des graphes suivants lui est associé. Lequel ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse


Should not have chosen


Should have chosen


Should not have chosen
On vérifie en effet que sur ce graphique, les bases des rectangles en bleu correspondent bien aux classes : par exemple le premier rectangle bleu a une base qui commence à 3 et se termine à 6 (c'est bien la classe). On procède de même pour toutes les bases des rectangles : on obtient bien les classes écrites dans le tableau. De plus, la hauteur du rectangle est alors de 10 unités, ce qui donne au total 30 petits carrés bleus (sachant que d'après la légende, 1 petit carré bleu = $0,01$), soit une fréquence égale à $30\times 0,01=0,330\times 0,01=0,3$ : cela correspond bien à la première colonne du tableau. On vérifie de même que les autres colonnes sont bien représentées.