Quiz de prérentrée

Question 1

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x+1}{\sqrt{x^2-1}}$
Votre réponseChoixCommentaireBonne réponse
$\rbrack -1 ; 1 \lbrack$
Should not have chosen
$\rbrack -\infty ; -1 \rbrack \; \cup \; \lbrack 1 ; +\infty \lbrack$
Should not have chosen
Selected
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should have chosen
$\mathbb{R} \setminus \{ -1 ; 1 \} $
Should not have chosen
Question 2

Quel est le domaine de définition dans $\mathbb{R}$ de la fonction suivante : $\dfrac{x^2-1}{x^2+1}$
Votre réponseChoixCommentaireBonne réponse
$\mathbb{R} \setminus \{ -1; 1 \}$
Should not have chosen
$\rbrack -\infty ; -1 \lbrack \; \cup \; \rbrack 1 ; +\infty \lbrack$
Should not have chosen
Selected
$\mathbb{R}$
Should have chosen
$\lbrack -1 ; 1 \rbrack $
Should not have chosen
Question 3

À quel système correspond la région blanche du graphique ?
Votre réponseChoixCommentaireBonne réponse
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & > 8 \end{cases}}$
Should have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & > 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & > 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
$\displaystyle{(S)\begin{cases} 2x+y & < 5\\ x-2y & < 8 \end{cases}}$
Should not have chosen
Question 4

Considérons un système général de 2 équations à 2 inconnues: $\displaystyle (S)\begin{cases} a\times x + b\times y &= c\\ \alpha\times x + \beta\times y &= \gamma \end{cases} $
Soit $E$ l'ensemble des solutions de $(S)$. Combien de solutions possibles peut comporter l'ensemble $E$ ?
Votre réponseChoixCommentaireBonne réponse
Exactement deux solutions.
Should not have chosen
Une seule solution. Système régulier.
Should have chosen
Aucune solution. Système incompatible.
Should have chosen
Selected
Une infinité de solutions. Système lié.
$\displaystyle (S)\begin{cases} x - y &= 0\\ 2x - 2y &= 0\end{cases} $
$E=\left\{ ( x = t; y = t ) \mathrm{pour tout} t\in \mathbb{R} \right\}$
Should have chosen
Question 5

Soit $f$ une fonction numérique définie sur l'intervalle $[-1;3]$ et $a$ un réel de cet intervalle.
Si $f$ est dérivable sur $[-1;1]$ et sur $[1;3]$ alors $f$ est dérivable sur $[-1;3]$.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
La fonction dérivée $f'(x)$ possède une dérivée à gauche et à droite de $x=1$, mais rien ne garantit que cette fonction $f'(x)$ ne soit définie pour $x=1$.
C'est le cas dans le graphique ci-dessous.
Question 6

La fonction $x \mapsto x\sqrt{x}$ est dérivable en $x=0$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
Revenir à la définition de la dérivée et calculer la limite en $x=0$  de $\lim\limits_{\substack{h\to 0 \\ h>0}} \frac{(x+h)\sqrt{x+h}}{h}$.
Question 7

Voici la courbe représentative d'une fonction $f$ sur $[-5;5]$.
Par lecture graphique, cocher les propositions vraies :
Votre réponseChoixCommentaireBonne réponse
Selected
La fonction $f$ n'est pas continue en $x=2$.
Should have chosen
Selected
La fonction $f$ est continue en $x=-2$.
Non, car les limites à gauche et à droite de $x\=-2$ sont différentes.
La fonction $f$ est continue sur $[-2;3]$.
La fonction $f$ est continue sur $]-2;2[$
Should have chosen
Selected
La fonction $f$ est continue sur $[2;4[$.
Should have chosen
Question 8

Soit $f$ une fonction dérivable sur $\mathbb{R}$. La courbe de sa dérivée est donnée ci-dessous.
$f$ admet-elle un maximum en $x=2$ ?
Votre réponseChoixCommentaireBonne réponse
Vrai
Selected
Faux
Should have chosen
C'est le maximum de $f'$, pas de $f$.
Question 9

Soit $f$ une fonction numérique et $\mathcal{C}_f$ sa courbe représentative dans le plan muni du repère $(O ; \vec{i} ; \vec{j} )$.
Si $f(-1)=0$ et si $f'(-1)=3$ alors la tangente à $\mathcal{C}_f$ au point d'abscisse $-1$ a pour équation $y=3x$.
Votre réponseChoixCommentaireBonne réponse
Vrai
Faux
Should have chosen
L'équation d'une tangente au point $A(x_a ; y_a)$ doit impérativement passer par le point $A$. Vérifier si c'est le cas ici.
Question 10

La fonction dérivée de $x \mapsto \sqrt{x^2 + 1}$ est toujours positive.
Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Faux
Should have chosen
Quelles sont les limites en $-\infty$ et $+\infty$ ? La monotonie est-elle possible ?
Question 11

Dans $\mathbb{R}$, l'équation $e^{2x}-3e^x - 4=0$ admet :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Une seule solution.
Should have chosen
Selected
Deux solutions.
Poser $X = e^x$ et transformer l'équation en une équation du second degré en $X$. Pour en déduire finalement $x$.
Should not have chosen

Aucune solution.

Should not have chosen
Question 12

La fonction $f \colon x \mapsto e^{-x}$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
négative sur $\mathbb{R}$.
Should not have chosen
Selected
décroissante sur $\mathbb{R}$.
Should have chosen
croissante sur $\mathbb{R}$.
Should not have chosen
Question 13

L'expression $-e^{-x}$ :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
est toujours négative.
Should have chosen
n'est négative que si $x$ est négatif.
Should not have chosen
n'est jamais négative.
Should not have chosen
n'est négative que si $x$ est positif.
Should not have chosen
Question 14

Cette formule est-elle vraie ou fausse ?
Pour tous réels $a$ et $b$, $e^{a+b}=\sqrt{e^{2a}e^{2b}}$.

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
Vrai
Should have chosen
Faux
Revoir ses formules classiques :
$\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
$\sqrt{X} = X^{\frac{1}{2}}$
$e^a\times e^b = e^{a+b}$
${e^a}^b = e^{a\times b}$
Question 15

L'égalité $\displaystyle e^{\ln x}=x$ est vrai pour tout $x$ appartenant à :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left[0;+\infty\right[$
Should not have chosen
Selected
$\left]0;+\infty\right[$
Should have chosen
$\mathbb{R}$
Should not have chosen
Question 16

Soit $f$ la fonction définie sur $]0 ; +\infty [ $ par $f(x)=x^2\ln(x)$.
Le nombre dérivé de $f$ en $e$ est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$e^2$
Revoir $\ln'(x)=\frac{1}{x}$ et $\left(uv\right)'(x)=u'(x)v(x) + u(x)v'(x)$.
Should not have chosen
$0$
Should not have chosen
$3e$
Should have chosen
Question 17

L'inéquation $e^x\leq 4$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$\left] 0 ; 4 \right]$
Should not have chosen
Selected
$\left] -\infty ; \ln(4) \right]$
Should have chosen
$\left] 0 ; \ln(4) \right]$
Should not have chosen
Question 18

L'équation $e^x=2$ a pour solution :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
$e^2$
Should not have chosen
$\ln\left(\dfrac{1}{2}\right)$
Should not have chosen
Selected
$\ln(2)$
Should have chosen
Question 19

On a représenté ci-contre les fréquences cumulées croissantes d'une série statistique. Les fréquences ne sont pas en pourcentage. La somme totale des fréquences est donc de 1.

Une seule des 4 affirmations suivantes est vraie. Laquelle ?

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected
$Q_3 = 450$
Should have chosen
$Q_1=300$
Should not have chosen
$Me = 0,3$
Should not have chosen
Aucune n'est vraie.
Should not have chosen
Le troisième quartile noté $Q_3$ est une valeur qui coupe la population en deux parts inégales : 3/4 (cad 75 %) ont un caractère inférieur à $Q_3$ et 1/4 supérieur à $Q_3$. Ici 75 % correspond à une fréquence de 0,75 , on se place à 0,75 au niveau de l'axe des ordonnées (où se trouvent les fréquences cumulées croissantes), on rejoint la courbe, et on lit l'abscisse correspondante : cela donne la valeur de 450. qui est le troisième quartile. Par la même méthode, on obtiendrait par exemple que le premier quartile est d'environ 250 (on place cette fois 0,25 sur l'axe des ordonnées, on rejoint la courbe, et on lit l'abscisse correspondante).
Question 20

Ce diagramme représente la répartition des élèves d'un lycée qui accueille 286 élèves en Seconde.

Le nombre total d'élèves du lycée toutes classes confondues est :

Catégorie:

Votre réponseChoixCommentaireBonne réponse
Selected

On ne peut pas savoir.

Should not have chosen
880
Should have chosen

858

Should not have chosen

781

Should not have chosen
Si l'on note $N$ le nombre total d'élèves du lycée, on a :
$\frac{32,5}{100} \times N = 286$
donc $N = 286 \times \frac{100}{32,5} = 880$